AMPA receptor-mediated miniature synaptic calcium transients in GluR2 null mice.
نویسندگان
چکیده
AMPA-type glutamate receptors are normally Ca(2+) impermeable due to the expression of the GluR2 receptor subunit. By using GluR2 null mice we were able to detect miniature synaptic Ca(2+) transients (MSCTs) associated with AMPA-type receptor-mediated miniature synaptic currents at single synapses in primary cortical cultures. MSCTs and associated Ca(2+) transients were monitored under conditions that isolated responses mediated by AMPA or N-methyl-D-aspartate (NMDA) receptors. As expected, addition of the antagonist 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX, 3 microM) blocked the AMPA receptor-mediated MSCTs. Voltage-gated Ca(2+) channels did not contribute to AMPA MSCTs because CdCl(2) (0.1-0.2 mM) did not significantly alter the frequency or the amplitude of the MSCTs. The amplitude of AMPA MSCTs appeared to be regulated independently from event frequency since the two measures were not correlated (R = 0.023). Synapses were identified that only expressed MSCTs attributed to either NMDA or AMPA receptors. At synapses with only NMDA responses, MSCT amplitude was significantly lower (by 40%) than synapses expressing both NMDA and AMPA responses. At synapses that showed MSCTs mediated by both AMPA and NMDA receptors, the amplitude of the transients in each condition was positively correlated (R = 0.94). Our results suggest that when AMPA and NMDA receptors are co-expressed at synapses, mechanisms exist to ensure proportional scaling of each receptor type that are distinct from the presynaptic factors controlling the frequency of miniature release.
منابع مشابه
Calcium-Permeable AMPA Receptor Plasticity Is Mediated by Subunit-Specific Interactions with PICK1 and NSF
A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable ...
متن کاملEvidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala.
Fast excitatory synaptic responses in basolateral amygdala (BLA) neurons are mainly mediated by ionotropic glutamate receptors of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype. AMPA receptors containing an edited GluR2 subunit are calcium impermeable, whereas those that lack this subunit are calcium permeable and also inwardly rectifying. Here, we sought to determine t...
متن کاملA calcium-dependent feedback mechanism participates in shaping single NMDA miniature EPSCs.
NMDA receptors (NMDARs) are highly calcium-permeable and are negatively regulated by intracellular calcium during prolonged exposure to agonist. We have investigated whether calcium-mediated feedback occurs during transient exposure to glutamate during single synaptic events. Examination of miniature EPSCs (mEPSCs) indicated that the decay kinetics of the NMDAR component was markedly slowed by ...
متن کاملThe influence of glutamate receptor 2 expression on excitotoxicity in Glur2 null mutant mice.
AMPA receptor (AMPAR)-mediated ionic currents that govern gene expression, synaptic strength, and plasticity also can trigger excitotoxicity. However, native AMPARs exhibit heterogeneous pharmacological, biochemical, and ionic permeability characteristics, which are governed partly by receptor subunit composition. Consequently, the mechanisms governing AMPAR-mediated excitotoxicity have been di...
متن کاملIschemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites.
Regulated AMPA receptor (AMPAR) trafficking at excitatory synapses is a mechanism critical to activity-dependent alterations in synaptic efficacy. The role of regulated AMPAR trafficking in insult-induced synaptic remodeling and/or cell death is, however, as yet unclear. Here we show that brief oxygen-glucose deprivation (OGD), an in vitro model of brain ischemia, promotes redistribution of AMP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2002